MatheAss 9.0 - Geometría 3D

Distancias en la esfera

Se calcula la distancia entre dos puntos P1  y  P2 en una esfera. Se combinan varias funciones de MatheAss.

Se ingresan los datos GPS (latitud y longitud) de los dos puntos. Junto con el radio de la esfera, dan las coordenadas polares de los puntos.

Estos se convierten en sus coordenadas cartesianas con la función correspondiente de MatheAss . El resultado proporciona las coordenadas de sus vectores de posición en un sistema de coordenadas con el centro de la esfera como origen.

Con su producto escalar se obtiene el ángulo α entre los dos vectores y finalmente, como el producto de α en radianes por el radio esférico, la longitud del arco circular sobre la esfera.

Ejemplo:

En línea recta entre Alexanderplatz en Berlín y el City Hall de Nueva York.
La tierra está idealizada como una esfera con un radio de 6371 km.

GPS decimal 
¯¯¯¯¯¯¯¯¯¯¯
    Berlín: 52.523403,  13.411400 
Nueva York: 40.714268, -74.005974 

GPS dms 
¯¯¯¯¯¯¯
    Berlín: 52° 31' 24.2508" N, 13° 24' 41.0400" E 
Nueva York: 40° 42' 51.3648" N, 74°  0' 21.5064" W 

Coordenadas polares 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
    Berlín: (6371 | 13,411400° | 52,523403°) 
Nueva York: (6371 |-74,005974° | 40,714268°) 

Coordenadas cartesianas 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
    Berlín: (3770,6450 | 899,08721 | 5056,0379) 
Nueva York: (1330,5796 |-4642,1091 | 4155,7216) 

Vectores de posición 
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
   ->  ⎧  3770,645048  ⎫   ->  ⎧ 1330,57957098 ⎫
   a = ⎪ 899,087213119 ⎪   b = ⎪-4642,10910614 ⎪
       ⎩ 5056.03788605 ⎭       ⎩ 4155.72160425 ⎭
	   
               ->  ->
   α = arccos( a · b / r2 ) 
     = 1,002215 [rad] = 57,422692°

Distancia 
¯¯¯¯¯¯¯¯¯
	d = r · α [rad] = 6385,112

Ingresando datos GPS

Los datos del GPS se pueden ingresar en decimales, así como en grados, minutos y segundos.
Se dan salida a ambas representaciones.

Por lo tanto, el programa también es adecuado para convertir grados decimales en grados, minutos y segundos (dms) y viceversa.

Aviso legal esp.matheass.eu