Pythagorean Triple
Pythagorean triples are integer solutions (x,y,z) of the equation
x2 + y2 = z2 ,
standing for the sides of right-angled triangles.
The program computes all coprime Pythagorean triples not bigger than a determined number.
Example:
For x, y, z between 100 and 400 we get:
( 119|120|169 ) ( 104|153|185 ) ( 133|156|205 ) ( 105|208|233 ) ( 140|171|221 ) ( 115|252|277 ) ( 120|209|241 ) ( 161|240|289 ) ( 160|231|281 ) ( 207|224|305 ) ( 175|288|337 ) ( 135|352|377 ) ( 136|273|305 ) ( 204|253|325 ) ( 225|272|353 ) ( 189|340|389 ) ( 180|299|349 ) ( 252|275|373 ) ( 152|345|377 ) ( 228|325|397 )
An application of Pythagorean triples is the twelve-knot cord, with which a right-angled triangle of sides 3, 4 and 5 can be marked.