Lineare Algebra

Linearkombination

Das Programm bestimmt die Linearkombination eines Vektors aus drei gegebenen Vektoren. Sind diese linear abhängig, so wird das durch eine Fehlermeldung angezeigt.

Die Routine eignet sich auch dazu, die lineare Unabhängigkeit von drei Vektoren im Raum zu prüfen, das heißt zu prüfen, ob die drei Vektoren in einer Ebene liegen.

Beispiel 1:

    | 1 |     | 1 |     | 1 |   | 2 |
  a·| 0 | + b·| 1 | + c·| 1 | = | 3 |
    | 0 |     | 0 |     | 1 |   | 4 |

Lösung :
      a = -1  b = -1  c = 4

Beispiel 2:

    | 1 |     | 2 |     | 1 |   | 2 |
  a·| 2 | + b·| 1 | + c·| 5 | = | 3 |
    | 0 |     | 1 |     |-1 |   | 7 |

  Die Vektoren sind linear abhängig

Siehe auch:

Wikipedia: Linearkombination
www.matheass.de